Materials Analysis of Fluorocarbon Films for Mems Applications

نویسندگان

  • J. Elders
  • M. Elwenspoek
چکیده

In this paper the results of the materials analysis of fluorocarbon (FC) films are presented. The properties of the fluorocarbon films are comparable to those of polytetrafluoroethylene (PTFE), better known under the trademarks such as teflon and fluon. The properties of PTFE are desirable for MEMS applications and enable new designs, new applications and new technological processing routes for microsystems. Therefore, FC films have a tremendous potential for MEMS applications. Furthermore, FC f i i can easily be deposited via spin coating, e-beam evaporation, in conventional reactive ion etchers and in plasmaenhanced deposition chambers using a carbonhydrotrifluoride plasma facilitating the use of the films for micro electromechanical structures [l]. The films deposited in a reactive ion etcher are extremely chemical resistant. The X-ray photoelectron spectroscopy (XPS) analyses results will be presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MEMS prototyping using RF sputtered films

In the present work, the deposition and characterization of dielectric, piezoelectric, semiconductor and conductor films by RF diode / RF magnetron sputtering process for applications in MEMS fabrication have been reported. Thin films of silicon dioxide, silicon nitride, amorphous silicon, zinc oxide and lanthanum doped lead zirconate titanate (PLZT) were prepared by RF sputtering process and e...

متن کامل

Selective etching of SiO2 over polycrystalline silicon using CHF3 in an inductively coupled plasma reactor

Selective etching of SiO2 over polycrystalline silicon has been studied using CHF3 in an inductively coupled plasma reactor ~ICP!. Inductive powers between 200 and 1400 W, as well as pressures of 6, 10, and 20 mTorr were used in this study of the etch rate and selectivity behaviors for silicon dioxide, silicon, and passively deposited fluorocarbon films. Using in situ ellipsometry, the etch rat...

متن کامل

Nanotwinned metal MEMS films with unprecedented strength and stability

Silicon-based microelectromechanical systems (MEMS) sensors have become ubiquitous in consumer-based products, but realization of an interconnected network of MEMS devices that allows components to be remotely monitored and controlled, a concept often described as the "Internet of Things," will require a suite of MEMS materials and properties that are not currently available. We report on the s...

متن کامل

Dependence of plasma-induced modification of polymer surfaces on polyatomic ion chemistry

Fluorocarbon plasmas are widely used to chemically modify surfaces and deposit thin films. The deposition of mass selected fluorocarbon ions is useful for isolating the effects specific to polyatomic ions. In this study, the detailed chemical modifications that result from the deposition of beams of polyatomic fluorocarbon ions (C3F5 + and CF3 ) on polystyrene surfaces at experimental fluxes ar...

متن کامل

Nanocrystalline Diamond Thin Films for MEMS and Biomedical Devices

The main aim of the NIRT project is to synthesize, characterize and model the nanocrystalline diamond thin films to utilize its extraordinary properties in various applications such as biomedical devices, MEMS structures and RF-MEMS devices. The research focus is in the following areas: (i) Synthesis and Processing of Nanocrystalline Diamond Films by Microwave Plasma Enhanced CVD: The primary o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004